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Abstract

For sequential prediction tasks, Solomonoff’s [30] celebrated result guarantees the
inductive success of the “simplicity” prior by showing that the predictive probabilities
induced by any optimal c.e. semimeasure converge to the posterior of the true proba-
bility almost surely. Hutter and Muchnik [13] have shown that there exists an optimal
c.e. semimeasure for which one can construct a Martin-Löf sequence along which this
optimal semimeasure fails to converge to the uniform measure. Since the study of algo-
rithmic randomness can be used to characterize “almost-sure” convergence theorems,
one can ask whether stronger notions of randomness suffice for Solomonoff conver-
gence. We show that the minimal strength of randomness required for off-sequence
convergence is at most 2-computable randomness; this establishes an upper bound on
the weakest notion of randomness that ensures the success of Solomonoff induction.
Furthermore, due to its rejection of Turing complete reals as random, difference ran-
domness prima facie appears to be the weakest notion that could guarantee convergence.
Contrary to this intuition, we prove a negative result with respect to the uniform mea-
sure. The machinery of this proof can be extended to show that any notion of random-
ness that does not guarantee convergence of all c.e. supermartingales will always yield
a negative result for Solomonoff convergence.
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1 Introduction

1.1 Outline

When faced with competing explanations of a phenomenon, the principle of Occam’s razor recom-
mends the simplest explanation as the correct one. This preference for simplicity has long been a
recurring theme in empirical inquiry, at the heart of which lies the task of making inferences from
observed data. This thesis focuses on a specific form of such inference: sequential prediction. Sup-
pose a sequence α is generated from a finite alphabet by an unknown probabilistic source. We have
the following problem at hand: given the first n observations of the sequence, what is the value of
the next entry?

Adopting what is often described as an Occam-style simplicity bias, Ray Solomonoff [30] proposed
an idealized solution to this problem. His framework — now known as Solomonoff induction —-
offers a rigorous method for sequential predictions. Solomonoff induction, while not implementable
in practice, has an important place in computer science, machine learning, and information theory.
It quintessentially formalizes the idea of using compressibility as a guiding principle in learning-
theoretic settings—an idea that is of practical consequence. As Ilya Sutskever, Chief Scientist at
OpenAI, aptly put it [29]: “compression equals generalization”. The key idea is that the more
succinctly a model can describe the observed data, the better it can be expected to generalize to
unseen instances [[25], [33]].

Solomonoff demonstrated the reliability of his method through the following much-celebrated the-
orem: in the long run, simpler extrapolations of the past data generally lead to truth. However, the
guarantee holds with probability-one relative to the true probability — and it is this qualifier that
prompts further scrutiny. The aim of this thesis is to investigate whether the tools of algorithmic
randomness can sharpen Solomonoff’s result by eliminating this qualifier, precisely identifying the
sequences on which the convergence is guaranteed.

The thesis is organized as follows. The remainder of this section reviews the necessary measure-
theoretic and computability-theoretic preliminaries. In Section 2, we introduce the notion of a
Solomonoff prior, whose conditionalization induces predictions along an observed sequence. Sec-
tion 2 also relates these predictors to a class of functions known as semimeasures. In Section 3, we
provide a brief introduction to algorithmic randomness and define several notions that will be used
later in the thesis. In Section 4, we draw the connection between Solomonoff induction and algo-
rithmic randomness, thereby motivating the central research question of this thesis. In particular,
we are interested in determining the degree of randomness required for successful learning within
Solomonoff’s framework. Section 5 discusses a key negative result due to Hutter and Muchnik [13],
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which shows that the canonical notion of randomness—Martin-Löf randomness—is insufficient for
Solomonoff induction to yield asymptotically correct predictions. In Section 6, we examine whether
stronger notions of randomness can support Solomonoff’s inductive program, and we show that both
2-computable randomness and strong density randomness (SDR) suffice for this purpose. Section 7
establishes a negative result for difference randomness, which, despite being stronger than Martin-
Löf randomness, still fails to guarantee success, thereby further narrowing the class of candidate
notions. Finally, in Section 8, we discuss several open questions that, if resolved, would further
clarify the results of this thesis, and we outline possible directions for future work.

1.2 Preliminaries

Throughout this thesis, we restrict our attention to Cantor space. This means that the data relevant
to our prediction task consists of infinite binary sequences. Let {0, 1}∞ and {0, 1}∗ be the sets of
all infinite binary sequences and finite binary strings, respectively. Given a sequence α ∈ {0, 1}∞,
we use αn to denote the n-th bit of α, and α1:n to denote its first n bits. We say a bit α′

n ∈ {0, 1} is
off-sequence if α′

n ̸= αn, and on-sequence otherwise. The empty string is denoted by ϵ.

Cantor space is topologized by the collection of basic open sets of the form [σ], where σ ∈ {0, 1}∗

is a binary string and
[σ] = {α ∈ {0, 1}∞ : σ ≺ α}

Here, σ ≺ α means that σ is a prefix of α, or equivalently, α is an extension of σ. Let A ⊆ {0, 1}∗.
Then,

[A] =
⋃
σ∈A

[σ]

A is also called the generator set of [A].

In our inductive setting, we also assume the existence of a true data-generating process, which we
identify with a probability measure on {0, 1}∞. Let this measure be denoted by µ. The probabil-
ity space we will work in is given by the triple ({0, 1}∞,B({0, 1}∞), µ), where B({0, 1}∞) is the
Borel σ-algebra on Cantor space — that is, the smallest σ-algebra containing all basic open sets.
The measure µ assigns probabilities to sets in B({0, 1}∞), and therefore, is a Borel measure. Any
function f : {0, 1}∗ → [0, 1] for which f(ϵ) = 1 and f(σ) = f(σ0)+ f(σ1) for all σ ∈ {0, 1}∗ can
be extended to a Borel measure on {0, 1}∞ by Carathéodory’s Extension Theorem. Any Borel mea-
sure µ is uniquely determined by the value it assigns to the basic open sets, µ([σ]). For convenience,
we write µ(σ) to mean µ([σ]).

Definition 1.2.1. The canonical Borel measure on {0, 1}∞ is the uniform or Lebesgue measure,
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which is given by
λ(σ) = 2−|σ|

for all σ ∈ {0, 1}∗, where |σ| is the length of the string.

In this thesis — and as is often the convention — the measure λ will refer to the uniform measure.

In a Bayesian framework, inductive learning proceeds via conditionalization. Within the purview
of our inductive task, we will be looking at sequences α ∈ {0, 1}∞ that are in the support of µ, so
the conditional probabilities µ(αn|α1:n−1) are always well defined. However, for an off-sequence
bit α′

n, it is possible that µ(α′
n | α1:n−1) = 0. Another important foundational assumption in this

thesis is that we are operating within a computable environment. In our setting, this translates to
assuming that the probability measure from which the data is sampled is computable. Given this, we
introduce a few computability-theoretic notions that are useful for defining a computable measure
and related notions.

Definition 1.2.2. A real r ∈ R is said to be computable if it can be computably approximated within
any arbitrary degrees of precision. Equivalently, a real is computable if there is a computable
sequence of rationals {qn}n∈N such that |qn − r| < 1/n for all n ∈ N.

Definition 1.2.3. A real r ∈ R is said to be left c.e. if there is a monotonically increasing computable
sequence of rationals {qn}n∈N such that limn→∞qn = r. A real r ∈ R is said to be right c.e. if there
is a monotonically decreasing computable sequence of rationals {qn}n∈N such that limn→∞qn = r.

Definition 1.2.4. A limit computable real is the limit of a computable sequence of rational numbers.
Such a real admits computable approximations, but there is no computable modulus of convergence.

Remark: Note that Cantor space and the interval [0,1] in R are near-homeomorphic. Specifically,
any sequence α can be translated to a real 0.α ∈ [0, 1]. In most cases, this correspondence allows us
to move fluidly between reals and sequences. A sequenceα ∈ {0, 1}∞ is c.e. if there are computable,
increasing approximations αt

n for the n-th bit of α. Suppose α is a c.e. sequence. Then we can
approximate 0.α with qt = 0.(αt

1:t). Therefore, 0.α is a left c.e. real.

Definition 1.2.5. A real-valued (partial) function f : D → R, defined on domain D, is (partial)
computable if the values the output assumes are computable, uniformly in the input. Formally, if f
is computable, then there exists a function g : D×N → R such that |g(x, n)− f(x)| < 1/n for all
n ∈ N.

A real-valued (partial) function f : D → R, defined on domain D, is (partial) c.e. if the values are
left c.e reals, uniformly in the input.
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We can obtain the definition of co c.e. functions in a similar way by replacing “left c.e.” with “right
c.e.”. Now, we can define what it means for µ to be computable. A measure on {0, 1}∞ is said to
be computable when the measure of each string is a computable real, uniformly in the string.

Computable relations, on the other hand, generate what is known as the arithmetic hierarchy:

Definition 1.2.6. A set A ⊆ {0, 1}∞ is a Σ0
n class if there is a computable relation R such that

A = {α ∈ {0, 1}∞ : ∃q1∀q2 . . . QqnR(α1:q1 , α1:q2 , . . . , α1:qn}

where Q is ∀ if n is even, Q is ∃ if n is odd. The complement of Σ0
n class is a Π0

n class. If a class is
both Σ0

n and Π0
n, then it is a ∆0

n class.

Limit computable reals, as defined in 1.2.4, are exactly those that can be expressed at the level of ∆0
2

in the arithmetic hierarchy. There also exist functions whose values fall strictly between the levels
of ∆0

1 and ∆0
2. One such example is an ω-c.e. function.

Definition 1.2.7. A function f : N → N is called ω-c.e. if there exists a computable approximation
ϕ(x, s) such that lims→∞ ϕ(x, s) = f(x) for all x ∈ N, and the number of changes in the value of
ϕ(x, s) as s increases is bounded by a computable function.

Lastly, to conclude our discussion of computability-theoretic preliminaries, we state one of the most
fundamental theorems in computability theory, known as Post’s Theorem [26]. The Turing jump
of a decision problem X — denoted by X ′ — is equivalent to the halting problem relative to an
oracle machine that solves X . Subsequently, the Turing jump of the empty set, ∅′, encodes the
halting problem. Post’s theorem establishes a relationship between the Turing jump operator and
the arithmetic hierarchy in the following way:

Theorem 1.2.8. (Post’s Theorem) For n ≥ 0:

1. A set A is Σ0
n ⇔ A is c.e. in ∅(n−1)

2. The set ∅(n−1) is Σ0
(n−1)-complete.

3. A set A is ∆0
n ⇔ S is computable from ∅(n−1)

Namely, this tells us how much computational power is required for an oracle machine to compute
functions of certain complexity in the arithmetic hierarchy. This will become particularly helpful in
defining relativized notions randomness later in the thesis.
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2 Solomonoff’s Theory of Inductive Inference

2.1 Solomonoff Prior

If one takes the Bayesian approach to sequential predictions, the first task one is confronted with is
choosing the correct prior over the universe of hypotheses. This prior would induce the probability of
observing the first n bits of any sequence α. Let’s denote this probability as M(α1:n). To compute
M(α1:n), we consider all possible hypotheses that are compatible with the observed data. Each
hypothesis is a program that is encoded as a binary string. To formally capture the simplicity of
these hypotheses, we will employ the notion of Kolmogorov complexity.

We first turn our attention to Turing machines, which become central in our computability-theoretic
setting. The Turing machine we are interested is a monotone universal Turing machine [[21], [32]].
Let’s call this machine Q. Universal Turing machines are those that can simulate any computable
function that is calculable by a standard Turing machine. Moreover, the input tape of a monotone
Turing machine is unidirectional, which ensures that nothing more than the bits of the input program
are read. The output tape is also unidirectional, which prevents it from overwriting any previous
output. This ensures that if p ⪯ q, then Q(p) ⪯ Q(q). Then, Kolomogorov complexity is defined
by

KQ(σ) = minp{|p| : Q(p) = y ∧ σ ≺ y}

In our setting of probabilistic prediction of infinite binary sequences, the hypotheses we consider
can be identified with the class P of minimal programs, defined with respect to K, that generate
infinite binary sequences beginning with the initial segment α1:n [[21], [12]]. In computability-
theoretic terms, the task of determiningM(α1:n) naturally translates to the following question: given
a universal Turing machine Q, what is the probability that a randomly chosen program from P
appears on the input tape? Thus, we can interpret M(α1:n) as the sum of the probabilities of all
programs for which Q produces an output that starts with α1:n.

Since we are interested in determining the probability of seeing an arbitrary program on the input
tape, our prediction task is best modeled with respect to universal probabilistic Turing machines
that are equipped with an additional read-only tape. This additional tape consists of a sequence of
independent random bits. Let P be the set of minimal programs for σ. Given access to independent
random bits, the probability of seeing a program p in P on the input tape is 2−|p|, where |p| is the
length of the program. The construction, so far, can be formalized as follows:

M(σ) =
∑

p∈P:Q(p)∈[σ]

2−|p|

If the length of the program is taken to be a reasonable gauge of the simplicity of the hypothesis,
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then the above formulation is clearly informed by the intuition that a simpler hypothesis should
receive a greater probability. It is easy to see that the above construction of M implicitly represents
a distribution over {0, 1}∞. As the observer gains more information, M(α1:n) is updated in line
with Bayes’ rule. Given a binary string α1:n, the prior M induces a predictive probability over the
value of αn+1 ∈ {0, 1}.

The monotonicity of the machine Q — and the corresponding minimality of the programs in P —
produces two crucial features ofM . First, for any σ, since the set of the minimal programs in trivially
prefix-free, we are guaranteed that M(σ) = λ

(⋃
p∈P:Q(p)∈[σ][p]

)
≤ 1. Second, M is superadditive:

that is, M(σ) ≥ M(σ0) +M(σ1). To see this, let J and F be the sets of minimal programs that
generate outputs beginning with σ0 and σ1, respectively. Observe that if j is a minimal program in
J , then either j is in P or a prefix of j is in P . If it is the case that j is in P , then it certainly cannot
be in F . Otherwise, if a prefix ν ≺ j belongs to P , then the probability of observing ν on the input
tape is at least twice that of observing j on the input tape. From this, we can conclude:∑

p∈P:Q(p)∈[σ]

2−|p| ≥
∑

j∈J :Q(j)∈[σ0]

2−|j| +
∑

f∈F :Q(f)∈[σ1]

2−|f |

Now, is the prior M constructed so far computable? It is not. The justification of its incomputability
is akin to that of the halting problem. For a given string σ and an arbitrary program g that has
produced a prefix of σ on the output tape, we cannot establish that g ̸∈ P; if we could, we would
be able to solve the halting problem. However, if a program p produces σ on the output tape, it can
be enumerated into P . This means M(σ) can be approximated from below; M is a c.e. function in
the sense of Definition 1.2.5.

2.2 Optimal Semimeasures

In the last subsection, we introduced Solomonoff’s prior M as a foundational tool for sequential pre-
diction within a Bayesian framework. This prior captures a weighted distribution over the universe
of hypotheses, with a bias toward simpler programs, and is grounded in the architecture of universal
monotone machines. The superadditivity of the Solomonoff prior corresponds to a general class of
functions, known as semimeasures. Semimeasures are powerful predictive tools that can be defined
in the following way:

Definition 2.2.1. A semimeasure is a function ρ : {0, 1}∗ → [0, 1] that satisfies the following
properties:

1. ρ(ϵ) ≤ 1 where ϵ is the empty string

2. ρ(σ) ≥ ρ(σ0) + ρ(σ1)

9



Observe that replacing the instances of “≥" in Definition 2.2.1 with “=" yields probability measures.
Thus, one can think of semimeasures as ‘defective’ probability measures. An important property of
certain semimeasures is their optimality.

Definition 2.2.2. A c.e. semimeasure ρ is optimal if for all c.e. semimeasures ρ′, there exists a
constant c > 0 such that for all σ ∈ {0, 1}∗, we have ρ(σ) ≥ cρ′(σ).

Zvonkin and Levin [35] showed that the class of all c.e. semimeasures is computably enumerable.
Let O = {v1, v2, v3, ...} be the class of all c.e. semimeasures. Additionally, let gi be a c.e. sequence
of weights such that

∑
i∈N gi ≤ 1. Then, an optimal c.e. semimeasure, say ξ, can be represented as

a Bayesian mixture of semimeasures in O, with weights1 assigned based on the complexity of the
semimeasure. We get:

ξ(σ) =
∑
i∈N

givi(σ)

It turns out that M , the prior defined for Solomonoff induction, always multiplicatively dominates
ξ, and consequently, is also an optimal c.e semimeasure [12]; M can be represented as a Bayesian
mixture of c.e. semimeasures.

Optimal semimeasures are of particular interest within Solomonoff’s inductive program as the fol-
lowing convergence result holds for all optimal semimeasures.

Theorem 2.2.3. (Solomonoff [30]) Suppose µ is a computable measure and M an optimal c.e.
semimeasure. Then, for µ-almost every α ∈ {0, 1}∞:∑

b∈{0,1}

(M(b|α1:n−1)− µ(b|α1:n−1))
2 = 0 and

M(αn|α1:n−1)

µ(αn|α1:n−1)
−→ 1

Note that there is a subtle difference between the two results. The result in terms of ratios, es-

tablished by Gács [21], is only concerned with on-sequence predictions since
M(αn|α1:n−1)

µ(αn|α1:n−1)
may

be undefined off-sequence. Regardless, these are powerful results as they guarantee the success of
Solomonoff’s program in the long run. Specifically, the theorem states that if α is sampled from
a computable measure µ, the predictive probabilities induced by M converge to the true probabil-
ity almost surely. This yields that the set of sequences on which the convergence result holds is a
µ-measure-one set.

However, this leaves open the question of what happens for individual sequences. For an arbitrary
data stream drawn from the underlying probability space, convergence — as in Theorem 2.2.3 —

1These weights will be discussed in more detail in Section 4.1
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can no longer be assured. This is precisely where algorithmic randomness comes into the picture:
it allows us to capture convergence properties of individual sequences.
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3 Algorithmic Randomness

3.1 Introduction: Randomness as Typicality

The field of algorithmic randomness, at its core, is concerned with formalizing what it means for
individual objects in infinite product spaces to be random [10]. The objects of our study, as is
customary for the field, are infinite binary sequences. “Randomness” is certainly a colloquial term;
we appeal to randomness in our daily lives. Within algorithmic randomness, these pre-theoretic
ideas are made rigorous using tools of computability theory and measure theory. Crucially, different
pre-theoretic notions motivate three main paradigms within which randomness is defined: typicality,
unpredictability, and incompressibility. We discuss both the incompressibility and unpredictability
paradigms in greater detail in the later sections. For now, we focus on the typicality paradigm, within
which Martin-Löf randomness — widely considered to be the standard notion of randomness —
emerges.

Associating randomness with typicality, random sequences are those that exhibit global regularities
with respect to a given probability measure. This underscores an important feature of defining ran-
domness: the choice of measure relative to which randomness is defined becomes fundamental to
whether or not a sequence is considered random. Typicality is the complement of rarity, implying
that a random sequence must not satisfy any rare property. This can be explicated in measure-
theoretic terms as the avoidance of measure-zero sets. However, for many commonly-studied prob-
ability measures such as the uniform measure, every sequence belongs to at least one measure-zero
set – the singleton set that only contains itself. To circumvent a vacuous definition of randomness, we
can view randomness as the absence of every effectively specifiable property of measure-zero. This
is tantamount to saying that random sequences are those that satisfy every measure-one property
that can be algorithmically described. This approach was pioneered by Per Martin-Löf who for-
malized these algorithmic descriptions by associating them with every performable statistical test
whose components are defined at different levels of the arithmetic hierarchy. Random sequences,
then, are those that pass all such tests. The precise definition is as follows:

Definition 3.1.1. (Martin-Löf [22]) Let µ be a computable measure. A µ-Martin-Löf test is a se-
quence {Ui}i∈N of uniformly Σ0

1 classes such that µ(Ui) ≤ 2−i. A sequence α ∈ {0, 1}∞ is µ-
Martin-Löf random if α ̸∈

⋂
i∈N Ui for all µ-Martin-Löf tests.

Given a measure µ, there are only countably many µ-Martin-Löf tests. It follows that the set of
all µ-Martin-Löf random sequences has µ-measure one. To obtain uniformly Σ0

1 classes, in the
background, we fix an enumeration, W = {Wn}n∈N, of c.e. sets of strings. In Definition 3.1.1,
each component of the test is uniformly Σ0

1 if there exists a computable function g : N → N that
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picks out the index of W such that Ui = [Wg(i)]. Further, a µ-Martin-Löf random α does not belong
to

⋂
i∈N Ui

2, equating Martin-Löf randomness with membership in all Σ0
2 classes of effective µ-

measure one. This implies that, wheneverµ is a Bernoulli measure, µ-Martin-Löf random sequences
obey many quintessential measure-one statistical laws that can be expressed as Σ0

2 classes, such as
the law of large numbers and iterated logarithm.

When it is clear from the context, we will omit specifying the measure with respect to which ran-
domness is defined.

3.2 Randomness Hierarchy

Since the descriptional complexity of the measure-one properties discussed in the last section can
vary, there is no singular notion of randomness. In effect, there is an infinite hierarchy of randomness
notions that correspond to different effectivity constraints. In this section, we will explore a few
examples of randomness notions that are stronger than Martin-Löf randomness.

Looking at Definition 3.1.1, there are three primary axes on which the definition can be altered to
yield other notions of randomness.

• Effectiveness condition: The effectivity constraint imposed on the way the test sequence
{Ui}i∈N is defined can be varied. Most commonly the sequence consists of uniformly Σ0

1

classes, as is the case for the definition of Martin-Löf randomness.

• Rate of Convergence: The speed of convergence of µ(Ui) to zero can be calibrated differ-
ently. For Martin-Löf tests, the measures of the components of the test converge to zero at a
computable rate.

• Passing condition: A sequence passes a Martin-Löf randomness test given by {Ui}i∈N as long
as it does not belong to at least one of the test components. In contast, the Solovay passing
condition is significantly stricter: a sequence Solovay-passes a randomness test if it belongs
to only finitely many of the Ui. It worth mentioning that when the tests are nested3, the two
passing conditions are equivalent.

To obtain some familiarity with the randomness hierarchy, we will look at some instances of random-
ness notions that can be derived by modifying the definition of Martin-Löf randomness. Within this
hierarchy, Martin-Löf random sequences are also known as 1-random sequences. There is a natural
way to obtain stronger notions of randomness — defined at higher levels in the arithmetic hierarchy

2The intersection of uniformly Σ0
1 classes is a Π0

2 class.
3That is, Ui+1 ⊆ Ui.
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— by relativizing 1-randomness. Consider a Turing machine that produces a Martin-Löf test. If
we augment this Turing machine with a halting oracle, the tests produced by this machine yield the
notion of 2-randomness. Specifically, the components of this test are uniformly Σ0,∅′

1 classes. More
generally, n-randomness can be defined as 1-randomness relativized to ∅n−1, where ∅n−1 is the
(n− 1)-st Turing jump of the empty set, in the same manner.

Definition 3.2.1. (Kurtz [17]) Let µ be a computable measure. A µ-Σ0
n test is a sequence {Ui}i∈N of

uniformly Σ0
n classes such that µ(Ui) ≤ 2−i. A sequence α ∈ {0, 1}∞ is µ n-random if α ̸∈

⋂
i∈N Ui

for all µ-Σ0
n tests.

Next, we can also obtain the notion of weak 2-randomness by taking the Definition 3.1.1 and mod-
ifying it to require only that the measures of the Ui’s go to zero as i approaches infinity [17]. Weak
2-randomness interpolates 2-randomness and Martin-Löf randomness, and is defined in the follow-
ing way:

Definition 3.2.2. (Kautz [14]) Let µ be a computable measure. A µ-weak 2-random test is a se-
quence {Ui}i∈N of uniformly Σ0

1 classes such that limiµ(Ui) = 0. A sequence α ∈ {0, 1}∞ is µ-weak
2-random if α ̸∈

⋂
i∈N Ui for all µ-weak 2 tests. In other words, µ-weak 2-random sequences are

those that belong to every Σ0
2 class of measure-one.

Another notion of randomness, which is famously incomparable with weak 2-randomness, comes
from Osvald Demuth’s line of research. Demuth introduced randomness tests with moving compo-
nents, permitting a computably bounded number of changes to each test component.

Definition 3.2.3. (Demuth [7]) Letµ be a computable measure. A Demuth test is a sequence {Ui}i∈N
of Σ0

1 classes such that µ(Ui) ≤ 2−i and there is a ω-c.e. function g for which Ui = [Wg(i)]. A
sequence α ∈ {0, 1}∞ is µ-Demuth random if for almost every Ui, α ̸∈ Ui for all µ-Demuth tests.

Note that the definition of Demuth tests closely resembles that of Martin-Löf tests, except that the
indexing function g is ω-c.e. rather than computable. We get a slightly weaker notion of randomness
if we relax the passing condition to require the sequence to pass the tests in the Martin-Löf sense.

Definition 3.2.4. (Kučera and Nies [16]) Let µ be a computable measure. A Demuth test is a
sequence {Ui}i∈N of Σ0

1 classes such that µ(Ui) ≤ 2−i and there is a ω-c.e. function g for which
Ui = [Wg(i)]. A sequence α ∈ {0, 1}∞ is µ-weak Demuth random if α ̸∈

⋂
i∈N Ui for all µ-Demuth

tests.
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Figure 1: A Small Segment of the Hierarchy

3.3 Randomness as Unpredictability

Another approach, known as the unpredictability paradigm, arguably bears a more intuitive con-
nection to the inductive framework discussed thus far. As the name suggests, this paradigm charac-
terizes random sequences as those for which predictions of the next bit cannot consistently (in the
long run) be accurate. From a gambler’s perspective, this implies that no betting strategy that makes
bets on each successive bit of a random sequence should be able to make unbounded gains. The
accumulated capital of the betting strategy is tracked by functions known as (super)martingales.

Definition 3.3.1. Given a computable measure µ, a function d : {0, 1}∗ → R≥0 is a µ-martingale
if it satisfies the following conditions:

• (Impossibility Condition) Whenever µ(σ) > 0, d(σ) is defined.

• (Fairness condition)

d(σ)µ(σ) = d(σ1)µ(σ1) + d(σ0)µ(σ0) (1)

If d(σ) is undefined, µ(σ) = 0. In that case, we take d(σ)µ(σ) to be 0.

If we replace “=” with “≥” in the fairness condition for martingales, we get a supermartingale.
Observe that the condition ensures that if the sequence is sampled from a probability space with
measure µ, the expected value of the capital made by betting on an additional bit does not exceed
the current capital the bettor possesses. For supermartingales, relaxing the fairness condition in (1)
is practically the same as allowing the bettor to discard some amount of his capital at each round.
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The gambler starts with the initial capital of d(ϵ). Betting on each consecutive bit of the sequence,
the gambler’s betting strategy must not succeed on a random sequence. Formally, a supermartingale
is said to succeed on a sequence α ∈ {0, 1}∞ if lim supnd(α1:n) = ∞. We get the following
characterization of Martin-Löf randomness in terms of supermartingales.

Theorem 3.3.2. (Schnorr [27]): Let µ be a computable probability measure. α ∈ {0, 1}∞ is
µ-Martin-Löf random if and only if no c.e. µ-supermartingale succeeds on it.

Note that one get an equivalent characterization, as in Theorem 3.3.2, in terms of martingales.

However, under the unpredictability paradigm, computable martingales are the most obvious in-
stances of effectivized martingales. Subsequently, defining randomness in terms of computable
martingales yields the notion of computable randomness. Schnorr [27] defined computable ran-
domness in the following way:

Definition 3.3.3. A sequence β is µ-computably random if there is no computable µ-martingale that
succeeds on it.

It is easy to see that computable randomness is a weaker notion of randomness than Martin-Löf
randomness. Perhaps less immediate is that computable randomness not only ensures that a gambler
cannot accumulate an infinite amount of capital through betting, but also that the profits stabilize in
the long run. In other words, computable randomness guarantees the convergence of computable
martingales.

Theorem 3.3.4. α is µ-computably random if and only if limnd(α1:n) exists and is finite for all
computable µ-martingales d.

With this, we end our brief introduction to algorithmic randomness. Now that we have understood
the theories of algorithmic randomness and Solomonoff induction, we can, in the next section, ex-
amine points of contact between the two.
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4 Connection Between Algorithmic Randomness and Solomonoff
Induction

4.1 Some History: Compressibility and Kolmogorov Complexity

The notion of compressibility serves as a prefatory conduit between the theory of algorithmic ran-
domness and Solomonoff’s inductive program. The incompressibility paradigm of randomness en-
codes a coder’s approach to defining what a random sequence is. The (plain) Kolmogorov complex-
ity C(σ) of a string σ is defined as the length of the shortest computer program that outputs σ. A
string σ is said to be incompressible if its complexity C(σ) is close to the length of σ itself. Intu-
itively, this means that the most efficient way to describe σ is simply to reproduce it in its entirety.
However, to derive a definition of randomness that is analogous to Martin-Löf randomness within
the incompressibility paradigm, we need to transition from C to prefix-free Kolmogorov complex-
ity K. K is defined using self-delimiting machines, enabling measure-theoretic tools for analyzing
the complexity of strings. A string σ is said to be K-incompressible if K(σ) ≥ c + |σ| for some
constant c. Schnorr [28] established that an infinite binary sequence α is Martin-Löf random if and
only if all of its initial segments are K-incompressible.

Although Kolmogorov complexity now bears Kolmogorov’s name, the notion of Kolmogorov com-
plexity predates Kolmogorov; it first appeared in the context of Solomonoff’s theory of induction
[31]. As Vitányi and Li somewhat peculiarly state, “inductive reasoning was the midwife that stood
at the cradle of Kolmogorov complexity” [20]. For Solomonoff, compressibility is a formal mea-
sure of simplicity. As we have already seen, Kolmogorov complexity is used to capture the set of
minimal programs corresponding to a given sequence of data. In fact, because the shortest pro-
grams dominate the Solomonoff prior, the prior defined in Section 2 can be expressed in terms of
Kolmogorov complexity [12].

M(σ) = 2−K(σ)+O(K(|σ|))

Note that this formulation also makes explicit why M is incomputable. The function K is well
known to be a co-c.e. [Theorem 2.3.2, [21]], and since M(σ) is inversely proportional to K(σ), the
resulting M is a c.e. semimeasure.

Whereas Kolmogorov associates randomness with incompressibility, Solomonoff exploits depar-
tures from randomness to construct a prior that yields asymptotically accurate predictions. Having
observed a historical connection between Kolmogorov’s and Solomonoff’s work, the next subsec-
tion will develop the crux of the research question that we seek to address in this thesis.

17



4.2 Motivation: Algorithmic Randomness and Almost-sure Convergence

An actively expanding line of research in algorithmic randomness investigates the degree of random-
ness required for effective versions of classical “almost everywhere” or “almost surely” theorems in
analysis and ergodic theory [11]. A theorem holds almost everywhere or almost surely on a mea-
sure space if it holds at all points except possibly on a set of measure zero. As we have already
seen, random sequences satisfy measure one properties that can be effectively described. While
descriptional complexity may vary, such effectivization of measure one sets — and equivalently,
effectivization of null sets — is suggestive of the idea that algorithmic randomness can be equated
with almost surely convergence.

For example, a well-known result in classical analysis states that any non-decreasing function f :

[0, 1] → R is differentiable almost everywhere in [0,1]. Demuth [8] was the first to ask the follow-
ing question: what amount of randomness must a real exhibit to make effective versions of such
functions differentiable at that point? For computable functions, computable randomness has been
shown to be the appropriate level of randomness for the theorem; all non-decreasing computable
functions f : [0, 1] → R are differentiable on computably random reals [5]. Observe that in asking
such a question, one must specify the effectivity constraints imposed on the mathematical objects to
which the classical theorem applies. In our example, instead of restricting attention to computable
functions, one might consider c.e. functions. Different choices of effectivity constraints yield dif-
ferent randomness notions under which the effectivized theorem holds. Conversely, one may also
approach the problem in reverse: by selecting a particular effective version of a classical theorem,
it is possible to tailor a corresponding randomness notion for which the random sequences satisfy
the conclusion of the theorem. Consequently, this approach enriches the hierarchy of randomness
notions, as we will see throughout the thesis.

The goal of this thesis is to extend this line of research into the learning-theoretic setting of Solomonoff
induction. Accordingly, the question arises: what level of randomness, relative to the true proba-
bility measure, suffices to guarantee the almost sure convergence stated in Theorem 2.2.3. In other
words, we aim to identify a notion of randomness such that the set of sequences deemed random
under this definition forms a subset of the set on which Solomonoff convergence holds.

4.3 Semimeasures and Supermartingales

Just as compressibility is a conduit between randomness and induction, the notion of predictability
is the conduit between betting strategies and sequential predictors. If we think of semimeasures as
predictors, it should not come as a surprise that supermartingales and semimeasures are inherently
related. In particular, semimeasures can be represented as supermartingales and vice versa. The
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following is a useful fact4 about supermartingales:

Fact 4.3.1. Given a computable measure µ, let d be a µ-supermartingale such that d(ϵ) ≤ 1.

Then, d(σ)µ(σ) is a semimeasure. Similarly, let ξ be a semimeasure. Then,
ξ(σ)

µ(σ)
defines a µ-

supermartingale d such that d(ϵ) ≤ 1.

From this, we obtain a natural correspondence between supermartingales and semimeasures, and
by extension, between c.e. supermartingales and left c.e. semimeasures. In order to reformulate the
definition of Martin-Löf randomness in terms of semimeasures, we require a notion of optimality
for supermartingales.

Definition 4.3.2. A c.e. supermartingale d is optimal if for each c.e. supermartingale m, there exists
a constant c such that cd(σ) ≥ m(σ) for all σ ∈ {0, 1}∗.

In other words, just like semimeasures, an optimal c.e. supermartingale multiplicatively dominates
other c.e. supermartingales. Since it is possible to construct a computable enumeration of c.e. su-
permartingales, we have the following theorem due to Schnorr:

Theorem 4.3.3. (Schnorr [27]) There exists an optimal c.e. supermartingale.

It can be inferred from the multiplicative dominance of the optimal c.e. supermartingales that, given
a sequence, boundedness of an optimal c.e. supermartingale entails boundedness of every other c.e.
supermartingale on that sequence. Conversely, if there exists any c.e. supermartingale that succeeds
on a sequence, then all optimal c.e. supermartingales must also succeed on that sequence. We
already know that Martin-Löf randomness guarantees boundedness. Given Fact 4.3.1 and Theorem
4.3.3, we can now restate Martin-Löf randomness in the following way:

Theorem 4.3.4. (Levin [1]) Let M be an optimal c.e. semimeasure and µ a computable measure.
A sequence α is µ-Martin-Löf random if and only if there exists a c such that for all prefix x of α,
the ratio M(x)/µ(x) ≤ c.

Since there is a formulation of µ-Martin-Löf random sequences in the form of Theorem 4.3.4, it
could reasonably be conjectured Martin-Löf randomness many be enough to induce convergence in
the Solomonoff sense. As we will see in the next section, this is not the case.

4A slight variation of this fact is proved in [34].
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5 Non-convergence in the Martin-Löf Sense

5.1 A Negative Result

Since Martin-Löf randomness is widely regarded as the paradigmatic notion of randomness, it is an
obvious starting point in investigating which randomness notions suffice for the convergence result
in Solomonoff’s inductive program. For any given measure µ, we know that the set of all µ-Martin-
Löf random sequences has µ-measure one. Further, Theorem 2.2.3 guarantees that the failure of
convergence could at most happen for sets that have µ-measure zero. We are interested in asking
the following question: is the former a subset of the set on which Theorem 2.2.3 holds? In light of
this question, the following is a notable result:

Theorem 5.1.1. (Hutter and Muchnik [13]): There exists an optimal c.e. semimeasure M and a
sequence β ∈ {0, 1}∞ such that β is λ-Martin-Löf random and

M(βn|β1:n−1) −̸→ λ(βn|β1:n−1)

Theorem 5.1.1 was later strengthened by Hutter and Lattimore [18]; the negative result is valid for all
optimal c.e. Bayesian mixtures of the semimeasures. The sequence β can be inductively constructed
in the following way: βn = 0 if M(β1:n−10) < 2−n, and βn = 1 otherwise. Hutter and Muchnik
show that for all n, M(β1:n−11) ≤ 2−n, and since λ(β1:n) = 2−n, it follows that β is λ-Martin-
Löf random by Theorem 4.3.4. Since M is a c.e. semimeasure, we know that a monotonically
increasing rational-valued function gM approximates M . Let M t(σ) = gM(σ, t). Now, we can
inductively define the approximations βt from M t as follows: βt

n = 0 if M t(β1:n−10) < 2−n, and
βt
n = 1 otherwise. Since M t ↗ M , βt ↗ β. Observe that, by construction, whenever βt

n = 1 and
βt+1
n = 0, it is the case that βt+1

n switches its value from 0 to 1 for some m < n. Sequences with
this property are known as almost c.e. sequences.

The rest of the proof of Theorem 5.1.1 can be readily modified to show that the theorem can be
extended to all almost c.e. Martin-Löf random sequences.

Theorem 5.1.2. Let M be an optimal c.e. semimeasure M and β a almost c.e. Martin-Löf random
sequence. There exists an optimal c.e. semimeasure M ′ such that

M ′(βn|β1:n−1) −̸→ λ(βn|β1:n−1)

Proof. Since β is almost c.e, we have lexicographically increasing approximations βt such that
β = limtβ

t.
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Figure 2: νt when t = 3 and βt = 011...

We define a function ν as follows:

νt(σ) :=


2−t if |σ| = t and σ < βt

1:t

νt(σ0) + νt(σ1) if |σ| < t

0 otherwise

where < is the lexicographical ordering on sequences. Figure 2 illustrates an example of the values
νt takes for a given t and βt. Given t and a sequence βt, the recursive clause ensures that for all
σ with |σ| < t, νt is additive. For |σ| > t, the descendant nodes are assigned the value of 0. νt

satisfies condition (ii) in Definition 2.2.1. It remains to verify that the value assigned to the empty
string is less than or equal to 1. By definition, νt(ϵ) is the sum of 2−t over all strings of length t that
are lexicographically less than βt

1:t. The number of such strings is at most 2t, and each contributes
2−t, so we have νt(ϵ) ≤ 1. Therefore, νt is a semimeasure. Since βt is computable, so is νt.
Moreover, because βt is lexicographically increasing in t, νt is monotonically increasing in t, and
hence ν := limt→∞ νt is a c.e. semimeasure.
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Inductively assume that νt(σ0) = 2−|σ|−1 and νt(σ0) = 2−|σ|−1, where |σ| < t and σx < βt
1:|σ|+1

for x ∈ {0, 1}. Then, σ < βt
1:|σ| and by definition, νt(σ) = νt(σ0) + νt(σ1) = 2−|σ|. Thus, for any

σ such that σ < βt
1:|σ| and |σ| ≤ t, we have νt(σ) = 2−|σ|. Similarly, it is straightforward to check

that for all σ such that σ is lexicographically after βt
1:|σ|, ν

t(σ) = 0.

Since sequence β is a λ-Martin-Löf random sequence, 01 occurs in the sequence infinitely many
times. In other words, it is infinitely often the case that βn = 0 and βn+1 = 1. We fix one such n.
For t ≥ n, we have νt(β1:n−1) = νt(β1:n−10) + νt(β1:n−11) by definition. Since βn = 0 and β is
lexicographically increasing, β1:n−11 > β1:n ≥ βt

1:n. We get νt(β1:n−11) = 0 from the definition of
νt, implying νt(β1:n−1) = νt(β1:n). It follows that ν(β1:n−1) = ν(β1:n) infinitely often.

Keeping the n fixed, take a sufficiently large t such that βt
1:n+1 = β1:n+1. Obviously, then νt(β1:n) =

νt(βt
1:n). Then, since βt

1:n+1 > βt
1:n0, νt(βt

1:n0) = 2−(n+1). Using the superadditivity of semimea-
sures, νt(βt

1:n) ≥ νt(βt
1:n0). This implies that νt(β1:n) ≥ 2−(n+1). νt is monotonically increasing in

t, so ν(β1:n) ≥ 2−(n+1).

Since M is an optimal c.e. semimeasure and β is λ-Martin-Löf random, we know that
M(σ)

λ(σ)
is

bounded along β. Then, there exists a c ≥ 1 such that
M(β1:n)

λ(β1:n)
≤ c for all n. Pick a γ such

that 0 < γ <
1

1 + 4c
. Define M ′(x) := (1 − γ)ν(x) + γM(x) for all x. M ′ is also an optimal

semimeasure as it multiplicatively dominates all c.e. semimeasures. Since M(β1:n−1) ≤ 2−n+1.c

and M(β1:n) > 0, we get

M ′(βn | β1:n−1) =
(1− γ)ν(β1:n) + γM(β1:n)

(1− γ)ν(β1:n−1) + γM(β1:n−1)
≥ (1− γ)ν(β1:n)

(1− γ)ν(β1:n−1) + γc2−n+1

Just as before, choose an n such that βn = 0 and βn+1 = 1. We know that ν(β1:n) ≥ 2−(n+1) and
ν(β1:n−1) = ν(β1:n). Therefore, we have

M ′(βn | β1:n−1) ≥
(1− γ)ν(β1:n)

(1− γ)ν(β1:n) + γc2−n+1
≥ (1− γ)2−n−1

(1− γ)2−n−1 + 4γc
≥ 1− γ

1− γ + 4γc

1

1 + 4c
> γ =⇒ 1− γ

1− γ + 4γc
>

1

2

We already know that λ(βn | β1:n−1) =
1

2
for all n. Since 01 occurs infinitely many times along β,

M ′(βn | β1:n−1) ̸= λ(βn | β1:n−1) as many times. □
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5.2 Understanding the Failure of Convergence

This section futher examines why it is not possible to substitute “µ-almost surely” with “µ-Martin
Löf random” in Theorem 2.2.3. The following proof is an adaptation of Miyabe’s construction in
[4] in our setting of Cantor Space. Let M be an optimal c.e. semimeasure, and µ be a computable
probability measure. Given some initial segment β1:n−1 of β ∈ {0, 1}∞ in the support of µ, the
Hellinger distance between the two measures is given by the following equation:

hn =
∑

x∈{0,1}

(
√

M(x|β1:n−1)−
√
µ(x|β1:n−1))

2 (2)

Let Nn =
∑

x∈{0,1}

√
M(x|β1:n−1)µ(x|β1:n−1)

Then, hn = [
∑

x∈{0,1}

(M(x|β1:n−1) + µ(x|β1:n−1))]− 2Nn

Since
∑

x∈{0,1}M(x|β1:n−1) ≤ 1 and
∑

x∈{0,1} µ(x|β1:n−1) ≤ 1, hn ≤ 2 − 2Nn. Since (1 − x) ≤
e−x, we have 2 − 2(e

−hn
2 ) ≤ hn. We get the following inequality: 2 − 2(e

−hn
2 ) ≤ 2 − 2Nn. Thus,

1 ≥ Nne
hn
2 .

Define function S : {0, 1}∗ → R≥0 in the following way:

S(σ) =

√
M(σ)

µ(σ)
e
∑|σ|

i=1
hi
2 (3)∑

x∈{0,1} S(σx)µ(σx)

S(σ)µ(σ)
=

∑
x∈{0,1}

√
M(σx)

M(σ)
.
µ(σx)

µ(σ)
e

h|σ|+1
2

∑
x∈{0,1} S(σx)µ(σx)

S(σ)µ(σ)
= N|σ|+1e

h|σ|+1
2 ≤ 1

Therefore, S is a µ-supermartingale.

Note: Similar to Definition 3.3.1, when S is undefined, µ(σ) = 0. But S(σ)µ(σ) is taken to be 0.

Proposition 5.2.1. If lim supnS(β1:n) < ∞, then limnhn = 0.

Proof. Let lim supnS(β1:n) < ∞. Suppose, towards contradiction, limn

∑
i≤n hi = ∞. It follows

that limne
∑

i≤n
hi
2 = ∞. Given the definition of S, supnS(β1:n) < ∞ and limne

∑
i≤n

hi
2 = ∞ imply

that

√
M(β1:n)

µ(β1:n)
−→ 0 as n tends to ∞. Since every computable measure is a c.e. semimeasure, M

dominates µ, which means that there exists a c > 0 such that for all binary strings σ, M(σ) ≥ cµ(σ).
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Then,

√
M(β1:n)

µ(β1:n)
≥

√
cµ(β1:n)

µ(β1:n)
.

√
M(β1:n)

µ(β1:n)
−→ 0, but

√
cµ(β1:n)

µ(β1:n)
−̸→ 0 as n goes to infinity.

We arrive at a contradiction. As a consequence, limn

∑
i≤n hi = ∞, implying that limnhn = 0. □

Suppose β is µ-Martin-Löf random. By Theorem 3.3.2, if S is a c.e. µ-supermartingale, then
lim supnS(β1:n) < ∞. By Proposition 5.2.1, it would follow that limnhn(β1:n) = 0. In effect,
if S is a c.e. µ-supermartingale, it would guarantee M(β1:n|β) −→ µ(β1:n|β) for any arbitrary se-
quence β that is µ-Martin-Löf random. By Theorem 2.2.1, we know that this is not the case, hence
S is not necessarily a c.e. function.

The state of art on characterizing Solomonoff’s convergence theorem using randomness is as fol-
lows. We have a negative result for Martin-Löf randomness. As a consequence of Proposition 5.2.1,
Miyabe suggests, in [23], that stronger notions of randomness such as 2-randomness and difference
randomness may be sufficient. In the next section, we will examine some stronger notions of ran-
domness for which the theorem could potentially hold.
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6 Searching for the Weakest Notion for Convergence

6.1 2-Computable Randomness

As mentioned earlier, randomness is not a singular notion, and the flexibility of effectivization allows
us to define an infinite number of randomness notions. Since Martin-Löf randomness does not admit
a characterization in terms of almost sure convergence in the Solomonoff case, in searching through
stronger notions we are asking: what is the weakest notion of randomness for which the Solomonoff
convergence result holds?

In this section, we use the construction in the previous subsection to prove that 2-computable ran-
domness guarantees Solomonoff convergence in terms of the Hellinger distance. First, we show
that:

Proposition 6.1.1. S in (3) is a limit computable µ-supermartingale.

Proof. Whenever the µ-supermartingale S(σ) is defined, we know that M(σ) > 0 and µ(σ) > 0.
Since M is a c.e. semimeasure, there exists a monotonically increasing rational-valued approximat-
ing function gM : {0, 1}∗ ×N → Q such that limygM(σ, y) = M(σ) and gM(σ, y+1) ≥ gM(σ, y).
Also, because µ is computable, there exists a monotonically decreasing rational-valued approximat-
ing function gµ : {0, 1}∗ × N → Q such that limygµ(σ, y) = µ(σ) and gµ(σ, y + 1) ≤ gµ(σ, y).

Then, there is a rational-valued approximating function
gM
gµ

such that

limy
gM
gµ

(σ, y) =
M

µ
(σ)

gM
gµ

(σ, y + 1) ≥ gM
gµ

(σ, y)

.

Therefore,
M(σ)

µ(σ)
is a c.e. function. Along the same line, since q → √

q is monotone increasing and

continuous in [0, ∞], it follows that

√
M(σ)

µ(σ)
is also a c.e. function.

However, for 1 ≤ i ≤ |σ|, the Hellinger distance hi is generally not a c.e. function. Complex
c.e. semimeasures such as Solomonoff prior are not closed under conditioning [19]; M(x|σ) where
x ∈ {0, 1} is only limit computable. Because the class of limit computable functions is closed
under addition, e

∑|σ|
i=1

hi
2 is a limit computable function. Thus, the output of S must also be limit

computable, uniformly in σ ∈ {0, 1}∗. □
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Although the hierarchy of computable randomness has not received much attention in the litera-
ture, it is natural to define µ-2-computable randomness by relativizing the notion of computable
randomness to the halting set:

Definition 6.1.2. Given a computable measure µ, a sequence α is µ-2-computably random if no
martingale that is computable from ∅′ succeeds on it.

Proposition 6.1.3. Given an optimal c.e. semimeasure M and a computable probability measure
µ, the following holds for all α ∈ {0, 1}∞ such that α is µ-2-computably random:

limn

∑
b∈{0,1}

(M(b|α1:n−1)− µ(b|α1:n−1))
2 = 0

Proof. Consider the construction given forS in (3). From Proposition 6.1.1, we know thatS is a limit
computable µ-supermartingale. By Post’s theorem, limit computable reals are computable from ∅′,
hence S is a supermartingale that is computable from ∅′. By Definition 6.1.2, no martingale that is
computable from ∅′ succeeds on α. Intuitively, because supermartingales are obtained by allowing
bettors to discard a portion of their capital, no supermartingale should be able to succeed on α either.
Formally, we can always scale the supermartingale S with an appropriate scaling factor to obtain
a martingale Q that succeeds on α, and since limit computable reals are closed under arithmetic
operations Leike and Hutter [19], the resulting martingale is also limit computable. We proceed as
follows. Let:

Q(ϵ) = S(ϵ)

Q(σ0) = S(σ0)

Q(σ1) = 2S(σ)− S(σ0)

It is easy to verify that Q dominates S in the sense that Q(σ) ≥ S(σ) for all σ. Q is also limit
computable. Suppose, towards contradiction, that lim supnS(α1:n) = ∞. Then, lim supnQ(α1:n) =

∞, implying that α is not µ-2-computably random. Therefore, lim supnS(α1:n) < ∞. The desired
result follows immediately from Proposition 5.2.1. □

Since the construction in (3) is based on the Hellinger distance, we established that the stronger
version of Solomonoff’s convergence theorem holds for 2-computable randomness: the predictive
probabilities of the semimeasure converge off-sequence to the true conditional probabilities for all
2-computably random sequences. In the sections that follow, we turn our attention to the weaker ver-
sion of Solomonoff’s theorem — concerning on-sequence convergence — and investigate whether
it holds under randomness notions that are strictly weaker than 2-computable randomness.
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6.2 Martingale Convergence

Given µ as the true computable probability measure and a sequence α sampled from µ, for on-
sequence convergence, we can take for granted that µ(α′

n|α1:n−1) ̸= 0 for α′
n ∈ {0, 1}. In other

words, we are only looking at predictions along α. The following fact will be useful in discussing
weaker notions of randomness for which convergence in terms of ratios can be realized.

Fact 6.2.1. Let M be an optimal c.e. semimeasure, µ a computable measure, and α a µ-Martin-

Löf random sequence. If the supermartingale defined as R(σ) =
M(σ)

µ(σ)
converges along α, then

M(α1:n|α1:n−1)

µ(α1:n|α1:n−1)
converges to 1.

Proof. First, we argue that R is a bounded supermartingale along α. Theorem 4.3.4 ensures that
R is bounded from above along α. We conclude that 0 < l < R(α1:n) < u < ∞ for all n. If

R converges, we know that
R(α1:n)

R(α1:n−1)
converges, implying that

M(α1:n|α1:n−1)

µ(α1:n|α1:n−1)
also converges.

Suppose
M(α1:n|α1:n−1)

µ(α1:n|α1:n−1)
converges to η. If η > 1, then there exists a c ∈ (0, 1) for which

∃N∀n R(α1:n)

R(α1:n−1)
> 1 + c, implying that limnR(α1:n) = ∞. Similarly, if η < 1, then there ex-

ists a c ∈ (0, 1) for which ∃N∀n R(α1:n)

R(α1:n−1)
< 1− c, implying that R tends to 0 along α. In both the

cases, as we have already argued, we reach a contradiction. Therefore, η must be 1 if R converges
along α. □

The above fact about bounded supermartingales glaringly hints at the idea that a notion of random-
ness that suffices for converges of all supermartingales would be sufficient for convergence in the
Solomonoff sense. Doob’s martingale convergence theorem naturally motivates asking for such a
notion. Recall that the theorem says that all µ-martingales (or µ-supermartingales) converge on
almost every in {0, 1}∞.

Definition 6.2.2. Let µ be a computable measure. A sequence α is µ-SD random if and only if all
c.e. µ-supermartingales converge along α.

The acronym SD in the above definition stands for “strong density”. The naming of this new notion
of randomness will become clear in later sections. Using Fact 6.2.1, it is easy to see that Theorem
2.2.3 holds for all SD random sequences. Since every c.e. supermartingale is limit computable, it
immediately follows that SD randomness is at least as weak as 2-computable randomness. In the next
section, we will argue that SD randomness may be a significantly weaker notion than 2-computable
randomness.
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6.3 Oberwolfach Randomness

We are seeking to address the question of where SD randomness fits within the randomness hi-
erarchy. To this end, we begin by discussing a notion known as Oberwolfach randomness, which
may provide a potential resolution. The test characterization of Oberwolfach randomness closely
resembles that of Martin-Löf randomness in that the test components are uniformly Σ0

1 classes [2].
The crucial distinction, however, lies in that the rate at which the measures of these components
converges to zero is no longer computable: instead, the rate is now tracked by a left c.e. real.

Definition 6.3.1. A µ-left c.e. bounded test is a nested sequence {Ui}i∈N of Σ0
1 classes such that

µ(Ui) ≤ ν − νi, where {νi}i∈N are approximations of a left c.e. real ν. A sequence α is µ-
Oberwolfach random if α ̸∈

⋂
i∈N Ui for all µ-left c.e. bounded tests.

Since weak 2-randomness, as defined in 6.1.2, stipulates no modulus of convergence for the rate at
which the measures of the components approach zero, Oberwolfach randomness is at least as weak
as weak-2 randomness. Bienvenu et al. also provide an equivalent characterization of Oberwolfach
randomness in terms of interval tests, relative to the uniform measure.

A rational open ball in {0, 1}∞ is a basic clopen subset of the form [σ] for some σ ∈ {0, 1}∗, and in
[0, 1] is an open interval with rational endpoints (including [0, a) and (b, 1]).

Definition 6.3.2. An interval array is a computable function G that maps the collection of rational
balls in [0, 1] to Σ0

1 classes in {0, 1}∞ such that:

(i) For all I , λ(G(I)) ≤ λ(I)

(ii) If I ⊆ J then G(I) ⊆ G(J).

An interval test consists of an interval array G and a left c.e. real k ∈ [0, 1]. The set of sequences
in {0, 1}∞ which are captured by the test (G, k) is⋂

k∈I

G(I).

Using interval tests, Bienvenu et al. [Theorem 5.6, [2]] have shown that if α is an Oberwolfach
random sequence, then every c.e. martingale converges on α. The proof of this result essentially
relies on three facts. To show that Oberwolfach randomness entials SD randomnes, we have to
ensure that these three facts hold for c.e. supermartingales. Firstly, if M is a left c.e. martingale
then there exists an increasing uniformly computable sequence of rational-valued martingales ⟨Mt⟩
which converge pointwise to M . Secondly, if On(M,a, b) denotes the set of sequences in {0, 1}∞

such that M oscillates below a and above b at least n times then λ(On(a, b)) ≤ (a/b)n. This latter
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fact is a general property of supermartingales which follows from the upcrossing inequality and so
holds even if M is a c.e. supermartingale. Thirdly, given a c such that a < c < b, we can bound
the probability that sufficiently close computable approximations of our c.e. martingale will switch
from oscillating between a and b at least n times to suddenly oscillating between c and b fewer than
n times.

We will now show that the first fact also holds if M is a c.e. supermartingale.

Lemma 6.3.3. If M is a c.e. supermartingale, then there exists an increasing uniformly computable
sequence of rational-valued supermartingales {Mt} which converge pointwise to M.

Proof. SinceM is c.e., there exists an approximating rational-valued functionM such that limnM(σ, n) =

M(σ) and M(σ, n) ≤ M(σ, n+ 1) for all σ.

We now define M0 as follows: first, set M0(ϵ) = M(ϵ, 0). Next, given M0(σ), we define M0(σ0)

and M0(σ1) by checking whether or not M0(σ) ≥ M(σ0, 0) +M(σ1, 0)

2
. If so, then we set

M0(σ0) = M(σ0, 0) and M0(σ1) = M(σ1, 0), satisfying the supermartingale condition. If not,
we find non-negative rationals m ≤ M(σ0, 0) and n ≤ M(σ1, 0) so that M0(σ) ≥ m+ n

2
. We

then set M0(σ0) = m and M0(σ1) = n, satisfying the supermartingale condition.

Further, given Mt−1, we define Mt ≥ Mt−1 as follows. First, set Mt(ϵ) = M(ϵ, t). Next, given
we have defined Mt(σ) ≥ Mt−1(σ), we then define Mt(σ0) and Mt(σ1) by finding the largest

natural k ∈ [0, t] for which Mt(σ) ≥
M(σ0, k) +M(σ1, k)

2
. If such a k exists then set Mt(σ0) =

M(σ0, k) and Mt(σ1) = M(σ1, k), satisfying the supermartingale condition as well as ensuring
thatMt(σ0) ≥ Mt−1(σ0) andMt(σ1) ≥ Mt−1(σ1) sinceMt(σ) ≥ Mt−1(σ). If no such k exists
then set Mt(σ0) = M0(σ0) and Mt(σ1) = M0(σ1), satisfying the supermartingale condition

since Mt(σ) ≥ M0(σ) ≥
M0(σ0) +M0(σ1)

2
as well as ensuring that Mt(σ0) = Mt−1(σ0) and

Mt(σ1) = Mt−1(σ1) since Mt(σ) ≥ Mt−1(σ).

Finally, for each string σ and natural k, there exists a natural t so that Mt(σ) ≥ M(σ, k) by con-
struction. Hence {Mt} converges pointwise to M. □

Given Lemma 6.3.3 and the upcrossing inequality, we can now attempt to capture the oscillations
of a c.e. supermatingale using interval tests. Let M be a c.e. supermartingale which oscillates on
α. Without loss of generality, we can take M(ϵ) ∈ (0, 1) by rescaling and find rationals a < b

so that lim infn M(α1:n) < a and b < lim supnM(α1:n). There exists an increasing uniformly
computable sequence of rational-valued supermartingales {Mt} which converges pointwise to M.
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Figure 3: A potential hierarchy?

For each interval I ⊆ [0, 1] we can find nI so that:

G(I) =
⋃

t:Mt(ε)∈I

OnI
(Mt, a, b)

is an interval array.

However, we can’t yet establish the third fact required for extending Theorem 5.6 in [2] to c.e.
supermartingales.

It is worth mentioning that Bienvenu et al. have shown that every Demuth test is also an Oberwol-
fach test. As a consequence, weak Demuth randomness implies Oberwolfach randomness. IIf one
could further establish that Oberwolfach randomness implies SD randomness, this would allow us
to situate SD randomness in the hierarchy as indicated in Figure 3.
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7 Density and Difference Randomness

7.1 Difference Randomness: The Possibility of a Positive Result

In this section, we consider an intermediate notion of randomness that lies strictly between SD ran-
domness and Martin-Löf randomness. Specifically, we motivate why one might think difference
randomness suffices for Solomonoff convergence. For any c.e. sequence α, we can always construct
a Martin-Löf test in the following way. Take Ui = [α1:i]. Then, α ∈

⋂
i Ui, and hence, no c.e.

sequence can be Martin-Löf random. Interestingly, the sequence β, defined in the proof of Theo-
rem 5.1.2—for which convergence fails—is close to being computably enumerable.

β is a lexicographically first λ-Martin-Löf random sequence; its left cut forms a computably enu-
merable set of finite strings. This implies that 0.β is a left c.e. real. Kučera and Slaman [15] have
shown that every c.e. Martin-Löf random real is the Chaitin’s Ω of some universal Turing machine.
Chaitin’s Ω, or the halting probability, refers to a real number that represents the probability that
a universal Turing machine will halt for an arbitrarily constructed program. The realized value of
Ω is dependent on the choice of the universal Turing machine. Further, Ω is Turing equivalent to
the halting problem. Turing equivalence between X and Y asserts that X can be computed from
Y and Y can be computed from X . Subsequently, a Turing machine equipped with an oracle tape
containing β can compute the halting problem.

Incompatible with putative intuitions about randomness, Martin-Löf random sequences like Chaitin’s
constant exhibit remarkable computational power. It has been contended that it is desirable for ran-
dom sequences to carry little to no useful information when accessed by oracle machines. From this
perspective, it is natural to search for a randomness notion that successfully captures the trade-off
between permissiveness and computational power. The significance of difference randomness lies
in the fact that it identifies the subclass of Martin-Löf random sequences that are computationally
too weak to compute the halting problem.

Franklin and Ng [9] define difference random sequences in the following way:

Definition 7.1.1. Let µ be a computable measure. A µ-d.c.e. test is a sequence {Ui\Vi}i∈N where
Ui and Vi are uniformly Σ0

1 classes such that µ({Ui\Vi}) ≤ 2−i for all i. A sequence β is difference
random (with respect to µ) if it passes all µ-d.c.e tests.

Franklin and Ng have shown that the class of Martin-Löf random sequences can be partitioned into
exactly two classes: those that Turing compute ∅′ and those that don’t.

Theorem 7.1.2. (Franklin and Ng [9]) A sequence is difference random if and only if it is Martin-
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Löf random and does not compute the halting problem.

The theorem above establishes that sequences such as β, which are used to demonstrate the negative
result for Martin-Löf randomness, are not classified as random under the definition of difference
randomness. This observation may, in part, motivate Miyabe’s suggestion [23] that a positive result
for difference randomness could be attainable. The following subsections show that this is not the
case.

7.2 Dyadic Density and Martingales

In order to prove a negative result for difference randomness, we will first proceed with a discussion
on dyadic densities in Cantor space.

Definition 7.2.1. Let C ⊆ {0, 1}∞ and α ∈ {0, 1}∞. Then, we can define lower and upper dyadic
densities — ρu and ρl, respectively — of C at α with respect to λ in the following way:

ρl(C|α) = lim infn
λ(C ∩ [α|n])
λ([α|n])

ρu(C|α) = lim supn

λ(C ∩ [α|n])
λ([α|n])

In the definition above, if limn
λ(C ∩ [α|n])
λ([α|n])

exists, upper and lower densities coincide. The common

value is known as dyadic density of C at α.

Recall that the Lebesgue density theorem states that for any measurable set C ⊆ {0, 1}∞, ρu(C|α) =
ρl(C|α) = 1 for almost every α in C. As has been the recurring theme throughout this thesis, we ask
what level of randomness of a sequence guarantees that the dyadic density at that point is 1. It is
easily seen that the dyadic density of measurable sets that are Σ0

1 in Cantor space is 1 at every point
in the set. As a result, the effective instance of the Lebesgue density theorem that we are concerned
with equates measurable sets with Π0

1 classes.

A natural starting point is to examine whether Martin-Löf randomness suffices. It has been shown
by Bienvenu et al. [Proposition 5.4, [2]] that for any Π0

1 class P and a Martin-Löf random sequence
X in P , ρu(P|X) = 1. The same cannot be said for lower dyadic densities. As a result, a new
notion of randomness emerges out of the project of effectivizing the Lebesgue density theorem.
The random sequences on which this effective version of the theorem can be validated are classified
under the definition of density randomness.
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Definition 7.2.2. (Miyabe, Nies, and Zhang [24]) A sequence α is λ-density random if and only if it
is λ-Martin-Löf random and a dyadic density-one point. To be dyadic density-one point, ρl(P|α) =
1 for all Π0

1 class P containing α.

As it turns out, difference randomness can be characterized in terms of dyadic densities.

Theorem 7.2.3. (Bienvenu et al. [3]) A sequence α is λ-difference random if and only if it is
λ-Martin-Löf random and a dyadic positive-density point. To be dyadic positive-density point,
ρl(P|α) > 0 for all Π0

1 class P containing α.

Clearly, density randomness entails difference randomness. The reverse, however, does not hold. In
particular, Day and Miller [6] proved a separation result between density and difference randomness;
there exists a difference random sequences that is not density random.

Theorem 7.2.4. (Day and Miller [6]) There exists a ∆0
2 sequence z that satisfies the following

desiderata:

1. z is λ-Martin-Löf random;

2. z is not a density-one point with respect to λ;

3. z is a positive-density point with respect to λ

The proof of Theorem 7.2.4 uses a notion of forcing that separates density-one points from positive-
density ones on Martin-Löf random sequences. If z is sufficiently generic for this notion of forcing,
then z is shown to be in compliance with properties (1), (2), and (3).

Now, we answer the question as to why dyadic densities warrant special interest. There is a natural
translation between dyadic densities and martingales. Let C ⊆ {0, 1}∞ be a measurable set. Define
a function M(σ) = λ(C | σ). Observe that:

M(σ).λ(σ) = λ(C|[σ]).λ(σ)

= λ(C ∩ [σ])

= λ (C ∩ [σ0]) + λ (C ∩ [σ1])

= λ(C|[σ0]).λ(σ0) + λ(C|[σ1]).λ(σ1)

= M(σ0).λ(σ0) +M(σ1).λ(σ1)

Thus, M is a λ-martingale. It follows that the dyadic density of C at X exists if and only if M
converges along X . Moreover, for any given Π0

1 class P , the function M(σ) = λ(P | σ) is a co-c.e.
λ-martingale. Subsequently, the function σ 7→ (1−M(σ)) defines a c.e. λ-martingale.
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Figure 4: Placing difference and density randomness on the hierarchy

Fact 7.2.5. There exists a c.e. λ-martingale M that oscillates on a λ-difference random sequence
X .

Proof. By Theorem 7.2.4, we get a λ-difference random sequence that is not a density-one point
with respect to λ. Let’s call it X . Every λ-difference random sequence is a λ-Martin-Löf random,
and hence, the upper dyadic density at X is always 1 for all Π0

1 classes to which X belongs. But
X is not a density-one point. This implies that there exists a Π0

1 class H that contains X such that
dyadic density of H at X does not exist. Let M(σ) = 1−λ(H|σ) be a c.e. λ-martingale. It follows
that M diverges along X .

We now have all the ingredients necessary to prove a negative result.

7.3 A Negative Result for Difference Randomness

Building on the last subsection, we finally provide a negative result for difference randomness;
we can find an appropriate optimal c.e. semimeasure D and λ-difference random X such that
Solomonoff convergence does not hold. First, we prove the following auxiliary lemma.

Lemma 7.3.1. Let M be the bounded c.e. martingale that oscillates on α. There exists a c.e.
supermartingale L that oscillates on consecutive bits of α, infinitely many times.

Proof. By Lemma 6.3.3, there exists a sequence {Ms}s∈N that witnessesM. Moreover, if limnM(α1:n)

does not exist and lim supnM(α1:n) < ∞, we can find rationals b < a such that there are infinitely
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many n with M(α1:n) ≥ a and infinitely many n with M(α1:n) ≤ b. We want to construct a c.e.
supermartingale L such that L(α1:n−1) ≥ a and L(α1:n) ≤ b for infinitely many n.

We construct a witnessing sequence {Ls}s∈N as follows:

Ls(ϵ) =

Ms(ϵ) if Ms(ϵ) < a

a otherwise

For all σ such that |σ| ≥ 1,

Ls(σ) =


Ms(σ) if Ms(σ) ≤ b

Ms(σ) if b < Ms(σ) < a and Ls(σ
−) < a

a otherwise

To show that Ls is monotonically increasing in s, we proceed by induction along an arbitrary se-
quence α. By construction and using the fact that Ms(σ) ≤ Ms+1(σ), we are guaranteed that
Ls(ϵ) ≤ Ls+1(ϵ) for all s. Inductively, assuming that Ls(α1:n) ≤ Ls+1(α1:n) for all s, we have the
following cases:

• IfMs(α1:n+1) ≥ a, thenMs+1(α1:n+1) ≥ a. This implies thatLs(α1:n+1) = a = Ls+1(α1:n+1)

so we are done.

• Otherwise, if Ms(α1:n+1) < a and Ls(α1:n+1) = Ms(α1:n+1), then since Ms(α1:n+1) ≤
Ms+1(α1:n+1) and we know Ls+1(α1:n+1) = a or L(α1:n+1)s+1 = Ms+1(α1:n+1), it must be
the case that Ls(α1:n+1) ≤ Ls+1(α1:n+1).

• Finally, if Ms(α1:n+1) < a and Ls(α1:n+1) ̸= Ms(α1:n+1), then it must be the case that
b < Ms(α1:n) < a and Ls(α1:n) ≥ a. Namely, since Ms(α1:n+1) ≤ Ms+1(α1:n+1)

and Ls(α1:n) ≤ Ls+1(α1:n), it follows that b < Ms+1(α1:n+1) and Ls+1(α1:n) ≥ a. Thus
Ls+1(α1:n+1) = a and so Ls(α1:n+1) ≤ Ls+1(α1:n+1).

Since α was arbitrary, we conclude that Ls(σ) ≤ Ls+1(σ) for all s and σ. Now, we show that each
Ls is a supermartingale. There are two cases to consider:

• If Ls(σ) = a, then by the above construction of Ls, we are guaranteed that Ls(σ0) ≤ a and
Ls(σ1) ≤ a. Thus, the supermartingale property is trivially satisfied.

• If Ls(σ) < a, then it must be the case that Ms(σ) = Ls(σ). Since Ms satisfies the su-
permartingale property, we know that Ms(σ0) + Ms(σ1) < 2a. If both Ms(σ0) < a and
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Ms(σ1) < a, then Ls(σx) = Ms(σx) for x ∈ {0, 1}. In this case, Ls(σ0) + Ls(σ1) =

2Ls(σ). On the other hand, if Ms(σx) ≥ a, then Ms(σ(1− x)) < a. Here, Ls(σx) = a and
Ls(σ(1−x)) = Ms(σ(1−x)) < a by construction. It follows that Ls(σx)+Ls(σ(1−x)) ≤
2Ms(σ) = 2Ls(σ).

For all σ, letL(σ) = limsLs(σ). Since {Ls}s∈N is uniformly computable in s,L is left c.e. uniformly
in σ. Furthermore, since each Ls is a supermartingale, L is also a supermartingale.

Along α, whenever Ms starts betting a or more, Ls bets a until we find an n such that Ms(α1:n)

is below or at b, after which, Ls copies Ms’s bets. In other words, if we can find k and n such that
Ms(α1:k) ≥ a and Ms(α1:l) ≤ b, then Ls(α1:n−1) = a and Ls(α1:n) ≤ b. Because M cuts across
the interval [a, b] infinitely many times along α, L oscillates on consecutive bits as many times. □

Theorem 7.3.2. There exists a sequence X ∈ {0, 1}∞ and an optimal c.e. semimeasure D such
that X is λ-difference random and

D(Xn|X1:n−1) −̸→ λ(Xn|X1:n−1)

Proof. Let M be an optimal c.e. semimeasure. By Fact 7.2.5 and Lemma 7.3.1, we know that there
exists a c.e. λ-supermartingale r and a λ-difference random sequence X such that r(X1:n−1) ≥ a

and r(X1:n) ≤ b for infinitely many n for some a, b with 0 < b < a. Let R(σ) =
M(σ)

λ(σ)
. Since

every difference random sequence is also Martin-Löf random, R is an optimal supermartingale that

is bounded on X , that is, 0 < l < R(X1:n) < u < ∞ for all n. Now, if
R(X1:n)

R(X1:n−1)
−̸→ 1, we are

done. If not, for sufficiently large n0, we have |R(X1:n)−R(X1:n−1)| < ε < γ(a−b) for all n ≥ n0

and some sufficiently small ε > 0. The goal is to contaminate the values of R with the values of r

along X . Let M ′ be a c.e. semimeasure that corresponds to r in the sense that r(σ) =
M ′(σ)

λ(σ)
. We

define a new λ-supermartingale R′(σ) =
R(σ) + γr(σ)

1 + γ
5. Then, for (the infinitely many) n ≥ n0

for which r(X1:n−1) = a and r(X1:n) ≤ b, we have

1− R′(X1:n)

R′(X1:n−1)
=

R(X1:n−1)−R(X1:n) + γr(X1:n−1)− γr(X1:n)

R(X1:n−1) + γr(X1:n−1)
≥ −ε+ γ(a− b)

u+ a
> 0

This implies that
R′(X1:n)

R′(X1:n−1)
−̸→ 1. LetD =

M + γM ′

1 + γ
. SinceR′ is an optimalλ-supermartingale,

D is an optimal semimeasure. It follows that

R′(X1:n)

R′(X1:n−1)
−̸→ 1

5Without loss of generality, we can assume r(ϵ) ≤ 1.
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(R(X1:n) + γr(X1:n))/(1 + γ)

(R(X1:n−1) + γr(X1:n−1))/(1 + γ)
−̸→ 1

(M(X1:n) + γM ′(X1:n))/(1 + γ)

(M(X1:n−1) + γM ′(X1:n−1))/(1 + γ)
· λ(X1:n−1)

λ(X1:n)
−̸→ 1

D(Xn|X1:n−1)

λ(Xn|X1:n−1)
−̸→ 1

We conclude that convergence fails on-sequence, implying an off-sequence failure of convergence.

□
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8 Conclusion

8.1 Main Contributions

The success of Solomonoff induction can be made precise in terms of off-sequence convergence
and on-sequence convergence, with the former constituting the stronger notion of success. Us-
ing Miyabe’s construction, we show that 2-computable randomness is sufficient for off-sequence
convergence of Solomonoff induction. By contrast, Hutter and Muchnik show that there exists an
optimal c.e. semimeasure and a λ-Martin-Löf random sequence α such that Solomonoff induction
fails to achieve on-sequence convergence. We strengthen this negative result by showing that such
failure occurs for all Martin-Löf random sequences α that are left c.e. reals. Miyabe had previously
suggested that this negative phenomenon could be avoided by restricting attention to difference
random sequences. However, we demonstrate that there exists an optimal c.e. semimeasure and a
λ-difference random sequence α such that Solomonoff induction again fails on-sequence conver-
gence.

Moreover, our proof shows that in order to guarantee on-sequence convergence for all semimea-
sures and probability measures, one must require a notion of randomness ensuring that no c.e. su-
permartingale diverges along the sequence. The seemingly weaker requirement that no optimal
c.e. supermartingale merely oscillates turns out to be equivalent. So long as there is a c.e. super-
martingale which oscillates, one can contaminate any optimal c.e. supermartingale with it to obtain
an optimal c.e. supermartingale that diverges. Finally, we argue that this notion of randomness is
potentially weaker than well-known notions such as weak-2 randomness and Demuth randomness.

8.2 Open Questions

The problem of isolating a notion of randomness that is necessary and sufficient for the convergence
of all c.e. supermartingales has long been elusive in the algorithmic randomness literature. While
several candidates, such as density randomness and Oberwolfach randomness, have been proposed,
no existing notion has yet been shown to fully capture this convergence behavior. In this thesis,
we show that 2-computable randomness suffices for on-sequence convergence of Solomonoff in-
duction. However, we leave open whether Oberwolfach randomness also suffices. Namely, does
Oberwolfach randomness entail SD randomness, i.e. does it guarantee the convergence of every c.e.
supermartingale?

A second, closely related issue concerns density-based notions. It has been claimed in [24] that
density randomness entails convergence of every c.e. supermartingale. This claim is erroneous,6

6This error has been identified by Simon Hutteger, Sean Walsh, and Francesca Zaffora Blando in a currently unpub-
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and motivates distinguishing strong density (SD) randomness from density randomness. In this
thesis, SD randomness is defined precisely to capture convergence of all c.e. supermartingales. It
remains open whether density randomness nevertheless implies SD randomness. These questions
interact with another open problem posed in [24], namely whether density randomness implies
Oberwolfach randomness.

Answering both questions in the affirmative would imply equivalence between these notions. More
precisely, if density randomness does entail Oberwolfach randomness, and if Oberwolfach random-
ness also implies SD randomness, then the three notions collapse: density randomness, Oberwolfach
randomness, and SD randomness coincide. This follows immediately from the fact that Oberwol-
fach randomness suffices to ensure that a sequence is a dyadic density-one point (Theorem 1.3 of
[2]), and hence already implies density randomness.

Of course, there is also a more direct route to locating SD randomness within the randomness hi-
erarchy, namely by establishing an explicit separation result. Concretely, such a separation would
amount to constructing a sequence on which every c.e. supermartingale converges, while at least
one limit computable supermartingale oscillates. A sequence with this property is SD random by
definition, yet fails to satisfy 2-computable randomness, since 2-computable randomness precisely
prohibits oscillation of limit computable supermartingales. Establishing the existence of such a
sequence would, therefore, demonstrate that SD randomness is strictly weaker than 2-computable
randomness.

8.3 Future Direction

The preceding discussion concerns the fine structure of randomness notions as they arise from con-
vergence properties of martingales and semimeasures. However, these distinctions between random-
ness notions also admit an interpretation in terms of the inductive assumptions built into different
predictive procedures. As Zaffora Blando argues in [34],

Algorithmic randomness notions may be taken to encode a specific type of inductive
assumptions—or commitments (either explicit or implicit)—that result from the sub-
jective prior with respect to which randomness is defined.

Which inductive assumptions are, then, implicit in Solomonoff’s predictors? Sterkenburg [32] has
shown that Solomonoff’s algorithmic predictors can be characterized as precisely those Bayesian
predictors that operate under the inductive assumption of effectiveness—that is, the assumption that
the true probability measure is at least a c.e. function. Exploring how randomness notions could

lished manuscript.
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encode such an inductive assumption necessitates establishing which sequences are deemed random
with respect to a given semimeasure, and how this classification interacts with randomness defined
relative to an underlying computable measure. One natural direction for further investigation is to
focus on sequences that lie in the intersection of these randomness classes: data that is agreed to
be random by both the predictor and the true probability measure. Restricting attention to such
sequences may allow one to isolate those negative results concerning Solomonoff induction that
stem from mismatches between the predictor’s inductive assumptions and the true data-generating
process.

Some preliminary progress in this direction has been made by Bienvenu et al. [4], who develop no-
tions of randomness relative to semimeasures. However, many of the randomness notions central to
this thesis—such as density randomness and difference randomness—currently lack semimeasure-
relative formulations. Extending these notions to the semimeasure setting thus represents a promis-
ing avenue for future work, both for refining the theory of algorithmic randomness and for clarifying
the inductive commitments underlying algorithmic predictors.
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